

Введение в биохимическую генетику

Спецпрактикум по биохимической генетике - Лекция 1
Старший преподаватель: PhD, Смекенов Изат Темиргалиевич
Кафедра молекулярной биологии и генетики

© ЦЕЛЬ ЛЕКЦИИ

Ознакомить студентов с основами биохимической генетики и её ролью в современной молекулярной биологии. Сформировать понимание принципов безопасной работы в лабораториях генной инженерии.

Научить ориентироваться в лабораторном помещении и распознавать основное оборудование и реагенты.

≴ ЗАДАЧИ

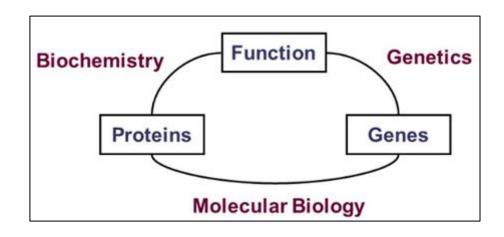
- ✓ Изучить основные понятия и направления биохимической генетики.
- Ознакомиться с правилами техники безопасности при работе с биологическими материалами и химическими веществами.
- ✓ Изучить назначение и принципы работы основного лабораторного оборудования (микроцентрифуги, термошейкеры, ПЦР-амплификаторы, электрофорезные камеры и т. д.).
- Разобраться в назначении часто используемых реагентов (буферы, ферменты, нуклеотиды, агароза и др.).
- Научиться правильно организовывать рабочее место и обращаться с лабораторными инструментами.

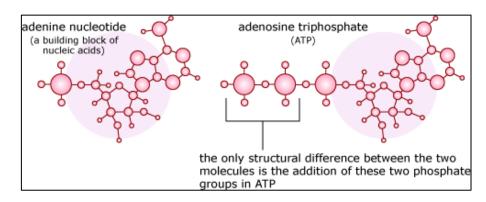
Я Ключевые термины

биохимическая генетика, генная инженерия, молекулярная биология, безопасность, лабораторные правила, оборудование, реагенты, ПЦР, электрофорез, стерильность, ДНК, РНК, ферменты.

© ТЕЗИС

✓ Биохимическая генетика изучает молекулярные основы наследственности и изменчивости живых организмов. В лабораториях молекулярной биологии особое внимание уделяется биологической и химической безопасности, правильной работе с реагентами и оборудованием. Соблюдение правил безопасности и знание устройства лаборатории являются необходимыми условиями успешного проведения генетических и молекулярных экспериментов.

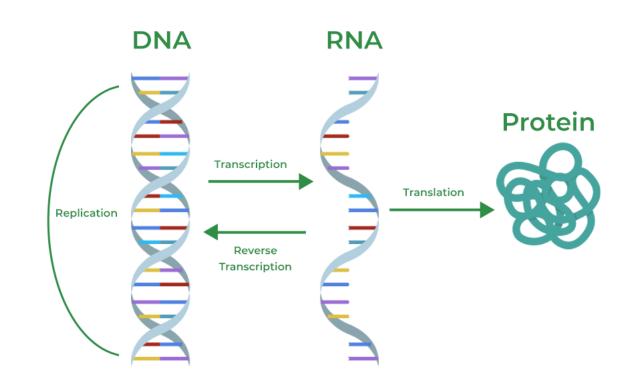

© ОСНОВНЫЕ ВОПРОСЫ


- 1) Что изучает биохимическая генетика?
- 2) Какие уровни биологической безопасности существуют в лабораториях?
- 3) Какие правила следует соблюдать при работе с ДНК и ферментами?
- 4) Для чего используется микропипетка и как правильно ею пользоваться?
- 5) Основные виды лабораторного оборудования и их назначение?
- 6) Какие меры необходимо предпринять при разливе химических реагентов?
- 7) Почему важно соблюдать стерильность при молекулярно-биологических экспериментах?

Что такое Биохимическая Генетика?

- ➤ Биохимическая генетика это раздел генетики, который изучает генетический контроль биохимических процессов в живых организмах.
- Основная цель: Установить взаимосвязь между работой конкретного гена и активностью конкретного белка (чаще всего фермента), который участвует в метаболическом пути.
- ➤ Ключевой принцип: "Один ген один фермент (полипептид) – идея, сформулированная Бидлом и Татумом (Beadle and Tatum) на примере гриба Neurospora.

Связь с другими науками: Это междисциплинарная область на стыке генетики, биохимии, молекулярной биологии и медицины.



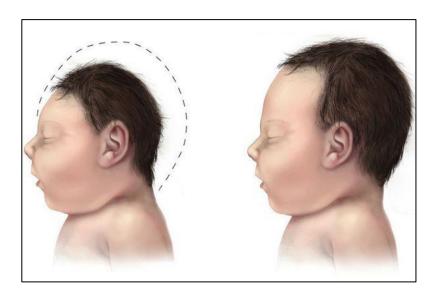
Ключевые процессы:

- Транскрипция (ДНК → РНК): Синтез информационной РНК (иРНК) на матрице ДНК.
- Трансляция (РНК → Белок): Синтез полипептидной цепи (белка) на рибосомах по матрице иРНК.

Значение: Белки (ферменты) контролируют все биохимические реакции в клетке, таким образом, ген в конечном итоге определяет фенотипический признак.

Роль Ферментов и Метаболические Пути

Ферменты: Подавляющее большинство генов кодирует белки, которые выступают в роли ферментов (биологических катализаторов).


Метаболический путь: Это последовательность биохимических реакций, где продукт одной реакции является субстратом для следующей.

Субстрат
$$_1 \xrightarrow{\Phi$$
ермент $_1} \Pi$ родукт $_2 \xrightarrow{\Phi$ ермент $_2} \Pi$ родукт $_3 \xrightarrow{\Phi$ ермент $_3}$ Конечный продукт

Генетический контроль: Каждый фермент в пути контролируется своим геном. **Нарушение:** Мутация в гене, кодирующем один из ферментов, приводит к "блокаде" метаболического пути, накоплению промежуточного субстрата и дефициту конечного

продукта. Это основа многих наследственных болезней.

Наследственные Болезни Обмена Веществ (НБО)

НБО возникают из-за мутаций в генах, кодирующих ферменты, транспортные белки или структурные белки, участвующие в метаболизме.

Механизм: Нарушение обмена веществ → Накопление токсичных промежуточных продуктов и/или дефицит жизненно важного конечного продукта.

Примеры (Классика биохимической генетики):

- Фенилкетонурия (ФКУ): Мутация в гене фермента фенилаланингидроксилазы. Накопление фенилаланина вызывает поражение нервной системы. (Своевременная диагностика и диета могут предотвратить тяжелые последствия).
- Альбинизм: Дефект в синтезе меланина из-за мутации в гене тирозиназы. Галактоземия: Неспособность расщеплять галактозу.

Методы Биохимической Генетики

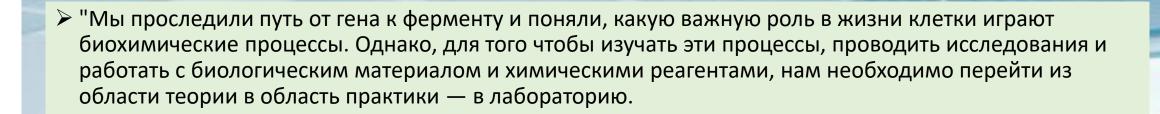
1. Биохимические методы:

- Скрининг: Анализ крови, мочи, тканей для выявления аномальных уровней метаболитов, ферментов или белков (например, неонатальный скрининг на ФКУ).
- Ферментативный анализ: Измерение активности конкретных ферментов в клетках или тканях.

2. Молекулярно-генетические методы:

- Секвенирование ДНК: Определение нуклеотидной последовательности генов для выявления мутаций.
- ПЦР (Полимеразная цепная реакция): Умножение специфических участков ДНК для анализа.

3. Цитогенетические методы:

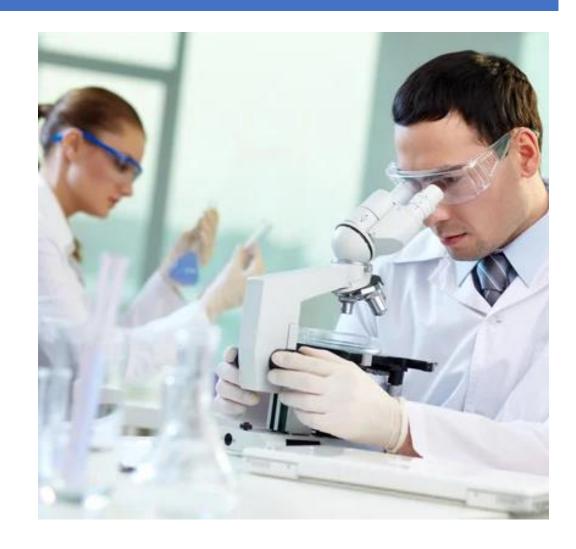

Анализ структуры и количества хромосом.

Эти методы позволяют проводить точную диагностику, генетическое консультирование и, в некоторых случаях, разрабатывать персонализированное лечение.

Перспективы

Биохимическая генетика демонстрирует, как генетический код реализуется в функции через биохимические пути.

- ✓ *Важность:* Знание молекулярных основ метаболизма имеет решающее значение для понимания здоровья, болезней и эволюции.
- ✓ *Перспективы:* Персонализированная медицина: Разработка лекарств и диет, основанных на индивидуальном генотипе.
- √ Генная терапия: Коррекция дефектных генов для лечения наследственных заболеваний.
- √ Фармакогеномика: Изучение влияния генов на реакцию организма на лекарства.


▶ Безопасность — это наш главный приоритет. Поэтому наш следующий блок будет посвящен тому, как обеспечить безопасную работу. Мы подробно изучим Правила безопасности в лабораторных помещениях, ознакомимся с организацией рабочего места, ключевым оборудованием и правилами обращения с лабораторными реагентами."

Теория биохимической генетики требует практического подтверждения. Любой эксперимент начинается с обеспечения безопасной рабочей среды.

Цели следующего блока:

- ▶Изучить Правила безопасности (ПБ) и Противопожарную безопасность (ППБ).
- ▶Ознакомиться с Лабораторным помещением (планировка, вытяжная вентиляция).
- ▶ Рассмотреть Основное оборудование (микроскопы, центрифуги, спектрофотометры).
- Изучить правила работы с Лабораторными реагентами (маркировка, хранение, утилизация).

ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ В ЛАБОРАТОРИИ

• Химическая лаборатория — то место, в котором правила техники безопасности необходимо соблюдать неукоснительно. Прежде всего, помещение должно быть оборудовано всей необходимой техникой, мебелью, вентиляцией и водопроводом.

Автоклав

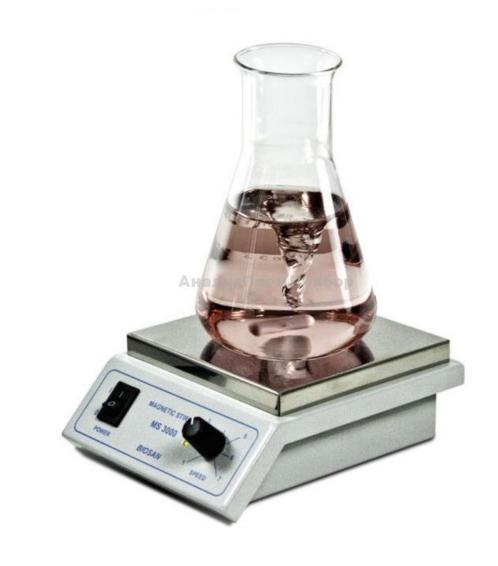
Ламинарный бокс

Термостат

Сухожировой шкаф

Водяная баня

Сухая баня для пробирок


Центрифуги

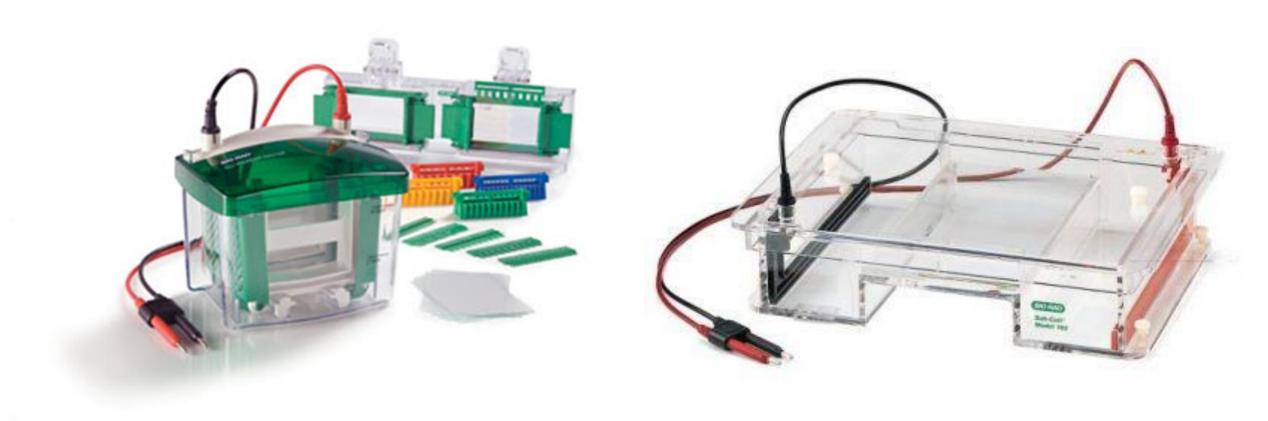
Вортекс

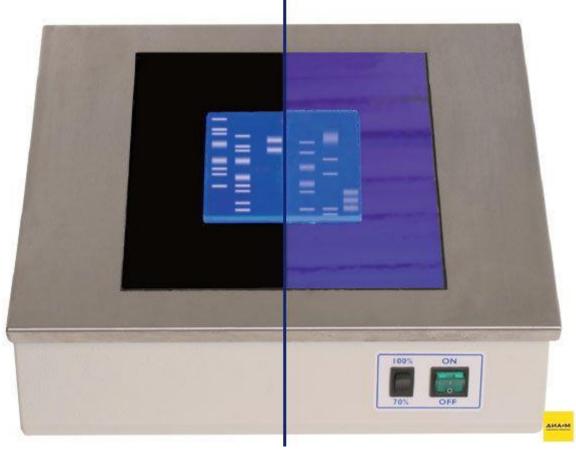
Магнитная мешалка

спектрофотометр

ph метр

Термоциклер


Соникатор

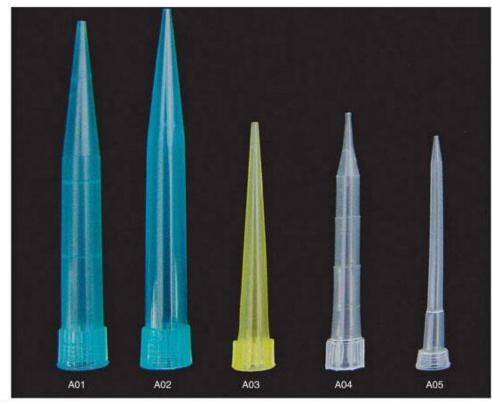

Форезные камеры

гель документирующая система

Транслюминатор



Весы



Лабораторная посуда

Item	Product	Spec.	Qty/Ctn	Ctn size	G/Nw(Kgs)
A01	Eppendorf Tips	1000ul W/Scale	15000	56*42*42	13/12
A01	Eppendorf Tips	1000ul W/Scale	10000	56*42*30	9/8
A02	Eppendorf Tips	1000u l	15000	56*42*42	13/12
A02	Eppendorf Tips	1000u l	10000	56*42*30	9/8
A03	Eppendorf Tips	200u l	50000	56*42*42	18/17
A03	Eppendorf Tips	200u l	30000	56*42*30	11/10
A04	Eppendorf Tips	300u1	30000	56*42*34	13/12
A05	Eppendorf Tips	10ul	50000	56*42*30	11/10

ПОМЕЩЕНИЯ ЛАБОРАТОРИИ

Химическая лаборатория должна соответствовать санитарным нормам СНиП 535-81 и иметь следующие изолированные помещения:

- 1. Аналитический зал помещение для выполнения работ по подготовке проб к анализу и его проведения. Помещение должно быть оборудовано вытяжной вентиляцией, водопроводом, раковиной и канализацией. Окраска стен масляная или клеевая, полы линолеум.
- 2. Весовая комната для размещения аналитических и технических весов. В комнате должны поддерживаться постоянные температура и влажность. Стены капитальные, исключающие вибрации пола, стен и подставок.
- 3. Гидробиологическая специально оборудованное помещение для гидробиологического и токсикологического анализа.
- 4. Дистилляторная изолированное помещение для установки оборудования для получения дистиллированной, бидистиллированной и деионизированной воды. Помещение должно быть оборудовано водопроводом и канализацией, стены облицованы кафельной плиткой, полы линолеум.
- 5. Приборная помещение для лабораторных приборов и выполнения измерений. Оборудование помещения должно соответствовать требованиям эксплуатации установленных в нем приборов.
- 6. Ртутная комната, предназначенная для работ с ртутью, ее соединениями и приборами с ртутным заполнением. Оборудуется в соответствии с правилами эксплуатации помещений, предназначенных для проведения работ с ртутью.
- 7. Термическая помещение для проведения работ, связанных с озолением, сжиганием, прокаливанием, сплавлением, оборудованное муфельными печами, вытяжными и сушильными шкафами. Стены должны быть облицованы керамической плиткой, полы линолеум.
- 8. Моечная помещение для мойки лабораторной посуды с наличием горячей и холодной воды и канализации из кислотоустойчивого материала. Моечная должна быть оборудована специальными моечными столами, один из которых с вытяжным шкафом для удаления вредных, сильно пахнущих веществ и промывания посуды кислотами и хромовой смесью.
- 9. Инженерная комната для обработки результатов анализов и хранения документации.
- 10. Складские помещения не менее двух изолированных сухих помещений для хранения запаса химических реактивов, материалов и инвентаря, оборудованные в соответствии с правилами их хранения и складирования.

Содержание вредных веществ в воздухе рабочих помещений не должно превышать значений, приведенных в ГОСТ 12.1.005-88 [3].

Каждый присутствующий в лаборатории человек должен придерживаться таких требований:

- Предварительно пройти инструктаж по технической и пожарной безопасности.
- Уметь пользоваться средствами пожаротушения, знать их расположение.
- Уметь пользоваться аптечкой и знать ее расположение. Обязательно умение предоставить первую помощь при ожогах (в т.ч. химических), и отравлениях.
- Знать особенности исходных реактивов и образующихся веществ.
- Применять средства индивидуальной защиты.
- После окончания работы убрать лабораторию, отключить газоснабжение, электричество, воду.

Запрещено делать следующее:

- Работать в лаборатории в одиночку. Допускается одновременное пребывание в помещении как минимум двух человек.
- Употреблять пищу или напитки из лабораторной посуды. Есть, пить и курить в лаборатории.
- Использовать для опытов невымытую посуду. Лабораторная посуда должна быть тщательно вымыта сразу же после окончания работы.
- Оставлять без присмотра включенное оборудование, электрические плитки, газовые горелки.
- Пробовать любые реактивы на вкус. Кислоты и другие агрессивные вещества могут нанести серьезны вред здоровью при контакте с незащищенным телом.
- Разогревать жидкости в закрытой посуде и аппаратах. Исключение автоклавы, специально предназначенные для этого.
- Применять реактивы в посуде без этикеток.
- Бросать в раковины любые твердые предметы (в т.ч. бумагу). Сливать в раковины легковоспламеняющиеся, горючие, химически активные жидкости (такие как соляная кислота техническая).
- Наклоняться над открытым отверстием нагревающегося сосуда, направлять его на других людей. Разогретая серная кислота и другие химические вещества выделяют ядовитые пары, очень опасные для человека. Если нужно идентифицировать содержимое сосуда, следует направить к себе пары легким движением руки над отверстием. Не вдыхать полной грудью.

ПРАВИЛА ПОЖАРНОЙ БЕЗОПАСНОСТИ

Обязательно наличие в лаборатории таких средств пожаротушения:

- Огнетушитель (углекислотный или жидкостный), закрепленный возле входной двери.
- Открытый ящик с сухим песком и совком.
- Закрывающийся ящик для использованной бумаги и промасленных тряпок. Периодически эту емкость следует очищать.
- Колбы из тонкого стекла с четыреххлористым углеродом или концентрированным нашатырным спиртом. Их устанавливают возле входной двери. Колбу следует с силой метнуть в пламя при возгорании бензина, масла или дегтя.

При обнаружении возгорания следует незамедлительно:

- Позвонить в пожарную службу.
- Перенести в безопасное место взрыво- и огнеопасные объекты.
- Обеспечить пожаротушение своими силами с помощью вышеописанных средств.

Особенности тушения разных веществ:

- Спирт, ацетон и другие водорастворимые вещества. Можно заливать струей воды, направленной в нижнюю часть пламени.
- Битум, масло, ацетон и другие вещества, которые не растворяются в воде. Для тушения используется песок, углекислотный огнетушитель или асбест.

Работа с кислотами и щелочами

- 6.2.1. Работа с концентрированными кислотами и щелочами проводится только в вытяжном шкафу и с использованием защитных средств (перчаток, очков). При работе с дымящей азотной кислотой с удельной плотностью 1,51 1,52 г/куб. см, а также с олеумом следует надевать также резиновый фартук.
- 6.2.2. Используемые для работы концентрированные азотная, серная, соляная кислоты должны храниться в вытяжном шкафу в стеклянной посуде емкостью не более 2 куб. дм. В местах хранения кислот недопустимо нахождение легковоспламеняющихся веществ.

Разбавленные растворы кислот (за исключением плавиковой) также хранят в стеклянной посуде, а щелочей - в полиэтиленовой таре.

- 6.2.3. Работа с плавиковой кислотой требует особой осторожности и проводится обязательно в вытяжном шкафу. Хранить плавиковую кислоту необходимо в полиэтиленовой таре.
- 6.2.4. Переносить бутыли с кислотами разрешается вдвоем и только в корзинах, промежутки в которых заполнены стружкой или соломой. Более мелкие емкости с концентрированными кислотами и щелочами следует переносить в таре, предохраняющей от ожогов (специальные ящики с ручкой).
- 6.2.5. Концентрированные кислоты, щелочи и другие едкие жидкости следует переливать при помощи специальных сифонов с грушей или других нагнетательных средств.
- 6.2.6. Для приготовления растворов серной, азотной и других кислот их необходимо приливать в воду тонкой струей при непрерывном помешивании. Для этого используют термостойкую посуду, так как процесс растворения сопровождается сильным разогреванием.

Приливать воду в кислоты запрещается!

- 6.2.7. В случае попадания кислоты на кожу пораженное место следует немедленно промыть в течение 10 15 минут быстротекущей струей воды, а затем нейтрализовать 2 5% раствором карбоната натрия.
- 6.2.8. Пролитую кислоту следует засыпать песком. После уборки песка место, где была разлита кислота, посыпают известью или содой, а затем промывают водой.
- 6.2.9. Пролитые концентрированные растворы едкого натра, едкого калия и аммиака можно засыпать как песком, так и древесными опилками, а после их удаления обработать место слабым раствором уксусной кислоты.
- 6.2.10. Использованную химическую посуду и приборы, содержащие кислоты, щелочи и другие едкие вещества, перед сдачей на мойку необходимо освободить от остатков и обязательно ополоснуть водопроводной водой.

Работа с легковоспламеняющимися жидкостями (ЛВЖ)

К работе с ЛВЖ и другими пожароопасными веществами допускаются сотрудники, изучившие Инструкции по технике пожарной безопасности и прошедшие соответствующий инструктаж.

- 6.3.1. Перед работой с ЛВЖ необходимо проверить наличие и подготовить к использованию первичные средства пожаротушения.
- 6.3.2. Запрещается производить какие-либо работы с ЛВЖ вне вытяжного шкафа!
- 6.3.3. Перегонку и нагревание низкокипящих огнеопасных жидкостей следует проводить в круглодонных колбах, установленных на банях, заполненных соответствующим теплоносителем (вода, масло, песок). Для нагревания бань следует пользоваться электроплитками только с закрытыми нагревательными элементами.

Проводить отгонку ЛВЖ на плитках с открытой спиралью запрещается!

- 6.3.4. При перегонке ЛВЖ необходимо постоянно следить за работой холодильника.
- 6.3.5. Запрещается нагревать на водяных банях вещества, которые могут вступать в реакцию с водой со взрывом или выделением газов.
- 6.3.6. Лабораторные установки, в которых проводилось нагревание ЛВЖ, разрешается разбирать только после остывания их до комнатной температуры.
- 6.3.7. В случае пролива или воспламенения ЛВЖ необходимо выключить все электронагревательные приборы, а при необходимости обесточить лабораторию отключением общего рубильника. Место пролива ЛВЖ следует засыпать сухим песком, а затем собрать его деревянным или пластиковым совком. Применение металлических совков запрещается.
- 6.3.8. Необходимо строго следить за тем, чтобы емкости с ЛВЖ не оказались рядом с нагретыми предметами и не освещались прямыми солнечными лучами, т.к. внутри герметично закрытой емкости создается давление, что может вызвать разрушение стеклянной бутыли.
- 6.3.9. При заполнении стеклянных бутылок ЛВЖ "под пробку" при повышении температуры на 5 10 градусов может произойти разрушение бутыли. Для предотвращения этого ЛВЖ не доливают в бутыли примерно на 10%.
- 6.3.10. Перекисные соединения требуют такой же осторожности в обращении, как и другие пожароопасные вещества. В процессе работы с ними недопустимо разогревание перекисей выше температуры их разложения.
- 6.3.11. Обязательным условием работы с перекисными соединениями является соблюдение чистоты рабочего места, приборов и посуды.
- 6.3.12. Для тушения органических перекисей следует применять воду, для неорганических сухой песок, порошковые составы и углекислотные огнетушители.

Работа с ртутью

- 6.4.1. Применение металлической ртути допускается только в тех случаях, когда она не может быть заменена другими, безвредными для здоровья веществами.
- 6.4.2. Для работы с ртутью должны быть выделены отдельные, изолированные от остальных помещения, оборудованные вытяжной вентиляцией и специальными столами. Столы должны быть покрыты линолеумом без швов и иметь борта высотой 2 см, посуда с ртутью устанавливается на противнях. Объем стеклянной тары для ртути должен быть не более 0,5 куб. дм.
- 6.4.3. Все работы с ртутью проводятся в вытяжном шкафу!
- 6.4.4. При работе нужно стремиться максимально сокращать открытую поверхность ртути, чтобы уменьшить площадь, с которой она испаряется.
- 6.4.5. Работы с мелкими ртутными приборами, в которых ртуть хорошо изолирована, допускается проводить в общих лабораторных помещениях на специально выделенных и соответственно оборудованных столах.
- 6.4.6. Для исключения выделения паров ртути все отверстия приборов, содержащие металлическую ртуть, закрываются стеклянными или резиновыми пробками или колпачками.
- 6.4.7. Для предупреждения соприкосновения ртути с металлами и образования амальгамы металлические части оборудования, контактирующие с ртутью, покрывают масляной краской или лаком.
- 6.4.8. Ртутные аппараты нельзя располагать непосредственно у дверей, окон, а также вблизи отопительных приборов или нагреваемых поверхностей.
- 6.4.9. Хранение неиспользуемой и поврежденной ртутной аппаратуры в рабочих помещениях запрещается.
- 6.4.10. В помещениях, где имеются ртутные приборы, не реже двух раз в год (один раз обязательно летом) должен производиться анализ воздуха на содержание паров ртути. При обнаружении превышения ПДК необходимо прекратить работу и провести дегазацию помещения.
- 6.4.11. Следует быть крайне осторожным при работе с солями ртути. Особо опасны соли двухвалентной ртути.
- 6.4.12. Разлитую ртуть собирают механически при помощи пипетки с грушей или медной (луженой) пластины, затем засыпают загрязненную поверхность элементарной серой или промывают хлорной известью или 1%-ным раствором перманганата калия, подкисленного соляной кислотой (5 куб. см НСІ на 1 куб. дм 1%-го раствора КМnO).
- 6.4.13. Для лучшей очистки от ртути посуду после промывания хромовой смесью и тщательного ополаскивания следует промывать 2,5%-ным раствором йода в 30%-ном растворе йодистого калия.
- 6.4.14. Отработанную ртуть хранят под слоем обезвоженного керосина. Выливать ртуть в канализацию запрещается!
- 6.4.15. Сотрудники лаборатории, работающие с ртутью, должны быть обеспечены халатами без карманов, застегивающимися сзади и перчатками. Спецодежда этих сотрудников должна храниться отдельно и меняться не реже одного раза в неделю.
- 6.4.16. После работы с ртутью следует тщательно вымыть руки теплой водой с мылом.

Работа с твердыми веществами

6.5.1. Все сухие реактивы необходимо брать фарфоровыми ложками, шпателями.

Брать реактивы незащищенными руками запрещается!

- 6.5.2. При взвешивании твердых веществ всегда надо пользоваться какой-либо тарой. Недопустимо насыпать вещества непосредственно на чашку весов.
- 6.5.3. Работы с ядовитыми и вредными твердыми веществами следует проводить только в вытяжном шкафу и со всеми мерами предосторожности.
- 6.5.4. Необходимо проявлять осторожность при смешивании твердых веществ (особенно органических), т.к. образующаяся пыль может быть взрывчатой. Запрещается смешивать сухие реактивы вблизи включенных электронагревательных приборов.
- 6.5.5. Работу с порошкообразными веществами для предотвращения их распыления нужно проводить в таких местах, где нет сквозняков или сильного движения воздуха.
- 6.5.6. Просыпавшийся на стол реактив нельзя всыпать обратно в ту же банку, где он хранится.
- 6.5.7. Работы с щелочными металлами следует проводить в вытяжном шкафу на чистом и сухом месте, применяя минимальные их количества и пользуясь защитными очками и резиновыми перчатками.

Во избежание воспламенения щелочных металлов нельзя допускать попадания на них воды.

6.5.8. С пожароопасными реактивами следует работать вдали от огня и работающих нагревательных приборов.

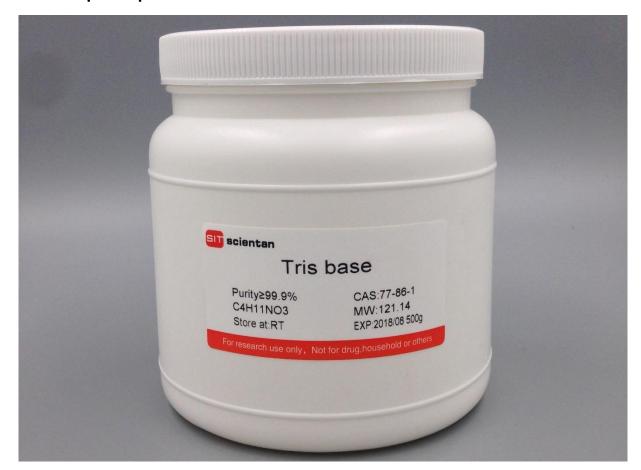
Работа с ядовитыми газообразными веществами

- 6.6.1. Работу с ядовитыми газообразными веществами проводят обязательно в вытяжном шкафу.
- 6.6.2. Перед работой необходимо проверить силу тяги в вытяжном шкафу. При плохой или недостаточной тяге работать с ядовитыми газообразными веществами запрещено.
- 6.6.3. При работах с ядовитыми газообразными веществами необходимо иметь наготове противогаз.

Основные химические реактивы, которые используются в лабораторных исследованиях. Их классификация.

Химические реактивы — это вещества, основной целью использования которых является проведение различных лабораторных, научных и исследовательских процедур.

- Основные разновидности реактивов:
- - общего назначения (кислоты, щелочи, растворы аммиака, некоторые оксиды и соли);
- Все используемые для химических реакций реагенты могут иметь разный состав, поэтому их принято разделять на несколько групп:
- > органические элементы;
- **>** неорганические вещества;
- > составы, имеющие в составе радиоактивные изотопы;
- > аналитические реагенты;
- растворители;
- > химические индикаторы
- ❖ Импортные химические реактивы по каталогам Acros Organics, Panreac, Sigma Aldrich / Fluka, Merck


- Органические реагенты бывают трех видов: растворители; кислоты; соли и соединения. Чаще всего они используются для титриметрии, люминесцентного анализа, фотометрии и др. Преимуществом данных реактивов, пожалуй, является их высокая чувствительность и избирательность, благодаря которым можно использовать определенный реагент для определения какого-то одного иона даже в присутствии мешающих ионов.
- **Неорганические реагенты** это соли, кислоты, оксиды, гидроксиды, металлы и неметаллы. Реактив Несслера также является неорганическим веществом.
- Радиоактивные реактивы содержат изотопы: H^2 , C^{14} , N^{15} , O^{17} , O^{18} и т.д.
- Аналитические реактивы используют для приготовления некоторых растворов и проведения аналитических опытов в учебных и научно-исследовательских заведениях.
- **Растворители** в свою очередь тоже делятся на органические и неорганические. Они могут быть как одним веществом, так и смесью из двух, трех и т.д.
- Индикаторы подразделяются на 4 группы: металлоиндикаторы; редоксиндикаторы; кислотно-основные и адсорбционные индикаторы. Меняя цвет раствора, в который их добавляют, они показывают, какая реакция произошла в растворе и какие ионы там присутствуют. Индикаторы по-разному проявляют себя в разных рН и при образовании комплексов, осадков и других соединений.

Важной особенностью **химреактивов** считается их **чистота**.

- При определении чистоты реактивов применяются следующие обозначения:
- технический (сокращенно тех.) самая низкая классификация реактива, основной компонент немногим превышает 95%.. Цвет обозначения на упаковке коричневый;
- чистый (ч.) содержит более 98% одного компонента. Цвет маркировки зеленый;
- чистый для анализа (ч.д.а.) основной компонент в таких реагентах составляет более 98%, может значительно превышать эту отметку, все зависит от области использования вещества. Цвет маркирования синий;
- химически чистый (х.ч.) высшая степень чистоты реактива. Основной компонент составляет более 99%. Цвет маркирования красный;
- особо чистый (ос.ч.) в эту квалификацию попадают особо чистые вещества, которые содержат очень малое количество примесей. В этом случае примеси не влияют на основные специфические свойства веществ. Число и концентрация примесей в отдельных особо чистых веществах различны и определяются, с одной стороны, потребностями практики, а с другой, достижениями препаративной и аналитической химии. Цвет маркера на упаковке желтый.

Каждый особо чистый реагент получает соответствующую марку, которая зависит от природы и числа лимитируемых в нем примесей.

- На каждом химическом реактиве в лаборатории должна быть этикетка с обязательными обозначениями, а именно:
 - название вещества и его химическая формула;
 - масса реактива;
 - квалификация реактива (квалификация зависит от степени чистоты вещества);
 - дата изготовления и срок годности;
 - номер партии.



Классификация опасности химических веществ и продукции по ГОСТ 12.1.007-76

• 1 класс опасности - Чрезвычайно опасная по степени воздействия на организм продукция, в соответствии с ГОСТ 12.1.007-76; 2 класс опасности - Высокоопасная по степени воздействия на организм продукция, в соответствии с ГОСТ 12.1.007-76; 3 класс опасности - Умерено опасная по степени воздействия на организм продукция, в соответствии с ГОСТ 12.1.007-76; 4 класс опасности - Малоопасная по степени воздействия на организм продукция, в соответствии с ГОСТ 12.1.007-76;

Яд	
Знак опасности	
Радиация	
Биологическая опасность	
Опасность	<u>^</u>
Высокое напряжение	4

Огнеопасно (F)	
Токсично (Т)	
Крайне токсично (Т+)	T+
Взрывоопасно (Е)	
Едкое (С)	
Опасно для окружающей среды (N)	*

Американский знак химической опасности.

Красное поле показывает степень пожароопасности материала (объекта).

Синее поле — опасность для здоровья человека.

Желтое поле — степень взрывоопасности.

В каждом поле стоит число от 0 до 4, указывающее степень опасности. 0 — опасность нулевая, 4 — опасность максимального уровня.

На белом поле указываются символы специального назначения, например, "ОХҮ" — обозначение сильного окислителя.

ЛИТЕРАТУРА

- І. Фундаментальные Учебники по Биохимии и Молекулярной Генетике (Основная часть)
- **1. Албертс Б. и др.** *Основы молекулярной биологии клетки.* (2-3 тома). (Или более позднее издание).
- **2. Ленинджер А.** Основы биохимии. (Или аналогичный современный учебник по биохимии, например, Уайт А. и др. Основы биохимии).
- **3. Грин Н., Стаут У., Тейлор Д.** *Биология.* (Или другой комплексный учебник по общей биологии для вузов).
- II. Специализированные Источники по Биохимической Генетике
- **5. Пухальский В. А.** *Введение в генетику.* (Или учебники по частной генетике).
- **6. Льюин Б.** Клетки. (Или Молекулярная биология гена).
- III. Источники по Лабораторной Безопасности и Методам (Практическая часть)
- **7. Сборники и Руководства по Практикуму по Биохимии и Молекулярной Биологии.** (Например, практикумы по лабораторной диагностике, клинической биохимии).
- **8. Инструкции (Правила) по технике безопасности при работе в химических и биологических лабораториях.** (Обычно внутренний документ учреждения или соответствующий ГОСТ/СанПиН).